Numerical simulation of three-component elastic wavefield in 2D TTI media in the condition of the combined boundary

DU Qi-zhen, SUN Rui-yan, ZHANG Qiang

Oil Geophysical Prospecting ›› 2011, Vol. 46 ›› Issue (2) : 187-195.

PDF(2739 KB)
PDF(2739 KB)
Oil Geophysical Prospecting ›› 2011, Vol. 46 ›› Issue (2) : 187-195.

Numerical simulation of three-component elastic wavefield in 2D TTI media in the condition of the combined boundary

  • DU Qi-zhen1, SUN Rui-yan1, ZHANG Qiang2
Author information +
History +

Abstract

In this work,based on the rotated staggered grid high-order finite-difference schemes of the first-order velocity-stress elastic wave equation,three-component elastic wavefield in the 2D TTI(Tilted Transverse Isotropy) media is simulated after combining NPML(Non-splitting Perfect Match Layers) absorption condition and the free-surface boundary condition.The snapshot and synthetic records illustrate: 1.The NPML absorption condition can efficiently attenuate near-surface incidence waves and evanescent waves;2.Comparison with the NPML absorption condition,the combined boundary conditions not only attenuate boundary reflections,but also accurately simulate free-surface situation and obtain full waves seismic data.Among these waves,PS converted wave as a special phenomenon provide useful information for the near surface structure investigation and multi-wave wavefield analysis;3.Rayleigh surface wave and surface multiples generated in the free-surface boundary have an important influence on seismic imaging,thus the free surface condition should be taken account in seismic data processing.The simulation results indicate the numerical simulation of elastic wavefield in the 2D TTI media based on the combined boundary conditions is feasible and valid.

Key words

finite-difference scheme / rotated staggered grid / NPML(Non-splitting Perfect Match Layers) absorption condition / free-surface boundary condition / combined boundary conditions / TTI(Tilted Transverse Isotropy) media / first-order velocity-stress elastic wave equation / wavefield / numerical simulation

Cite this article

Download Citations
DU Qi-zhen, SUN Rui-yan, ZHANG Qiang. Numerical simulation of three-component elastic wavefield in 2D TTI media in the condition of the combined boundary[J]. Oil Geophysical Prospecting, 2011, 46(2): 187-195

References

[1] Alterman Z,Karal,C. Propagation of seismic wave in layered media by finite difference methods. Bulletin of thi Seismological Society of America, 1968, 58(1):367-398 [2] Madariaga R. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 1976, 66(3): 639-666 [3] Virieux J. SH wave propagation in heterogeneous media:velocity-stress finite difference method. Geophysics,1984,49(11):1933-1957 [4] Virieux J. P-SV wave propagation in heterogeneous media: velocity-stress finite difference method. Geophysics,1986,51(4):889-901 [5] Robbert van Vossen,Robertsson JO A,Chapman,H. Finite-ditference modeling of wave propagation in,fluid-solid configuration. Geophysics,2002,67(2): 618-624 [6] Moczo P, Kristek,et al. 3D heterogeneous stag-gered-grid tinite-ditference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduii and densities. Bulletin of the Sei-~ mological Society of America,2002,92 (8):3042-3066 [7] Saenger,H, Gold N, Shapiro,A. Modeling the propagation of elastic waves using,moditied iinite-difference grid. Wave Motion,2000,31(1): 77-92 [8] Saenger,H,Bohlen T. Finite-diiference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics,2004,69(2): 583-591 [9] Li Z. Compensating iinite-diiference errors in 3-D migration and modeling. Geophysics,1995,56(10): 1650-1660 [10] Boris,P,Book,L. Flux-corrected transport: I. SHASTA,a fluid transport algorithm that works. Journal of Computational Physic,1973,11 (1): 38-69 [11] Book,L,Boris,P,Hain K. Flux-corrected transport II,generalization of the method. Journal of Computational Physia,1975,18: 248-283 [12] Du Qi-zhen, Li Bin and Hou bo. Numerical modeling of seismic wavefields in transversely isotropic media with,compact staggered-grid finite difference scheme. Applied Geophysia,2009,6(1),42-49 [13] Engquist B,Majda A. Absorbing boundary conditions for the numerical simulation of waves. Mathematia of Computation,1977,31: 629-651 [14] Cerjan C,Kosloff D,Kosloff,and Reshef M.,nonreflecting boundary condition for discrete acoustic and elastic wave equation. Geophysia,1985,50(4)705- 708 [15] Berenger J.,perfectly matched layer for the absorptionofelectromagneticwaves. Journalof Computational Physics,1994,114: 185 -200 [16] Collino,and Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastody-namic problem in anisotropic heterogeneous media. Geophisics,2001, 66(1),294-307 [17] Drossaert,F and Giannopoulos A.,nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves. Geophysics,2007,72(2): T9-T17 [18] Kuzuoglu,and Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave and Guided Wave Letters,1996,6:447-449 [19] Levander,R. Fourth-order finite-difference P-SV seismograms. Geophysics,1988,53(11):1425-1436 [20] Robertsson,AJ.,numerical free-surface condition for elastic/viscoelastic finite difference modeling in the presence of topography. Geophisics,1996,61(6):1921-1934 [21] Bohlen,and Saenger,E. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophisics,2006,71(4):T109-T115 [22] 吴国忱,罗彩明,梁锴.TTI介质弹性波频率一空间 域有限差分数值模拟.吉林大学学报.2007,37(5): 1023-1033 Wu Guo-chen, Luo Cai-ming and Liang Kai. Fre-quency-space domain finite difference numerical simulation of elastic wave in TTI media. Journal of Jilin University,Earth Science Edition), 2007,37(5): 1023-1033 [23] 裴正林,王尚旭.任意倾斜各向异性介质中弹性波波 场交错网格高阶有限差分法模拟.地震学报.2005. 27(4),441-451Pei Zheng-lin and Wang Shang-xu.,Staggered-grid high-order finite-difference modeling for elastic wave-field in arbitry titlt anisotropic media. Acta Sei-~ mologica Sinica,2005,27(4):441-451 [24] 吴国忱.各向异性介质地震波传播与成像.山东东营: 中国石油大学出版社,2006 [25] Mittet R. Free-surface boundary conditions for elastic staggered-grid modeling schemes. Geophysics,2002, 67(5):1616-1623 [26] Gutowski,R,Hron F,Wagner,E and Treitel S. S*,Bulletin of the Seismological Society of America,1984,74(1):1-78 [27] 杜启振,秦童.横向各向同性介质弹性波多分量叠前 逆时偏移.地球物理学报,2009,52 (3): 801-807 Du Qi-zhen, Qin Tong. Wavefield propagation characteristics in the fracture induced anisotropic double porosity medium. Chinese Journal of Geophysics,2009,52(3):801-807
PDF(2739 KB)

35

Accesses

0

Citation

Detail

Sections
Recommended

/