时频属性法薄互层预测

刘力辉, 李建海, 孙莹频, 胡诚

石油地球物理勘探 ›› 2017, Vol. 52 ›› Issue (6) : 1261-1268.

PDF(1454 KB)
PDF(1454 KB)
石油地球物理勘探 ›› 2017, Vol. 52 ›› Issue (6) : 1261-1268. DOI: 10.13810/j.cnki.issn.1000-7210.2017.06.017
综合研究

时频属性法薄互层预测

  • 刘力辉1, 李建海2, 孙莹频1, 胡诚2
作者信息 +

Thin inter-bed prediction with time and frequency attributes

  • Liu Lihui1, Li Jianhai2, Sun Yinpin1, Hu Cheng2
Author information +
文章历史 +

摘要

1/4波长以内的薄互层厚度预测一直是勘探难题,本文主要探讨利用时频属性预测薄互层累计厚度的方法。通过薄互层楔状模型和两个叠置薄层模型,厘清薄互层累计厚度与时频属性的关系及其主要影响因素。模型研究结果表明:净毛比、层数和互层模式都对峰值振幅-毛厚度关系有影响,其中净毛比影响最大,其次是互层数,影响最小的是互层模式;净毛比控制峰值振幅、峰值频率与毛厚度关系,也控制调谐厚度范围;在调谐厚度内,峰值振幅(积分能谱)与毛厚度呈单调递增线性关系,峰值频率与毛厚度呈单调递减线性关系;积分能谱与净厚度呈线性关系,积分能谱有扩大调谐厚度范围功能,有利于计算薄互层净厚度。根据模型试算结果,在实际资料中运用人工智能方法,利用峰值振幅和峰值频率等联合计算薄互层净厚度。预测结果表明本文方法准确、可靠,实用性强。

Abstract

It is very difficult to predict thin inter-beds with its thickness of the 1/4 wavelength.This paper mainly discusses a method for predicting the cumulative thickness of thin inter-beds with time and frequency attributes.Based on a thin inter-bed wedge model and two stacked thin inter-bed models,the relationships between cumulative thickness and time-frequency attributes of thin inter-bed and the main factors that influence the relationship are determined.The following understandings are obtained based on the model tests:①The net-to-gross ratio,the number of thin beds,and the inter-bed mode affect the relationship between the peak amplitude and the gross thickness,the net-to-gross ratio has the largest influence,then the number of thin beds,and the inter-bed mode; ②The net-to-gross ratio controls the relationship between the peak amplitude (integral energy spectrum) and the gross thickness and the relationship between the peak frequency and the gross thickness,it also controls tuning thickness range; ③In the tuning thickness,the relationship between the peak amplitude and the gross thickness shows a single increasing linearity,and the relationship between the peak frequency and the gross thickness shows a single decreasing linearity; ④The integral energy spectrum and the net thickness are linear,and the integral limit can expand the tuning thickness range,which is beneficial to calculate the thin bed net thickness.In practice,we calculate a thin bed net thickness with the artificial intelligence based on the peak amplitude and peak frequency,and the results show that the proposed method is reasonable and reliable.

关键词

薄互层 / 净毛比 / 毛厚度 / 峰值振幅 / 峰值频率 / 积分能谱 / 人工智能

Key words

integral energy spectrum / artificial intelligence / thin inter-bed / net-to-gross ratio / gross thickness / peak amplitude / peak frequency

引用本文

导出引用
刘力辉, 李建海, 孙莹频, 胡诚. 时频属性法薄互层预测[J]. 石油地球物理勘探, 2017, 52(6): 1261-1268 https://doi.org/10.13810/j.cnki.issn.1000-7210.2017.06.017
Liu Lihui, Li Jianhai, Sun Yinpin, Hu Cheng. Thin inter-bed prediction with time and frequency attributes[J]. Oil Geophysical Prospecting, 2017, 52(6): 1261-1268 https://doi.org/10.13810/j.cnki.issn.1000-7210.2017.06.017
中图分类号: P631   

参考文献

[1] Zeng H,John A and Katherine G.How thin is a thin bed? An alternative perspective.SEG Technical Program Expanded Abstracts,2008,27:834-838.
[2] Puryear C I,Castagna J P.Layer-thickness determination and stratigraphic interpretation using spectral inversion:Theory and application.Geophysics,2008,73(2):R37-R48.
[3] 凌云研究小组.应用振幅的调谐作探测地层厚度小于1/4波长地质目标.石油地球物理勘探,2003,38(3):268-274.
Ling Yun Study Group.Application of amplitude tuning in surveying geologic target thickness less than 1/4 wavelength.OGP,2003,38(3):268-274.
[4] 孙鲁平,郑晓东,首皓等.薄层地震峰值频率与厚度关系研究.石油地球物理勘探,2010,45(2):254-259,271.
Sun Luping,Zheng Xiaodong,Shou Hao et al.The studies on relationship between thin layer seismic peak frequency and its thickness.OGP,2010,45(2):258-259,271.
[5] 尹继尧,吴宝成,王维等.基于TK能量的峰值瞬时频率在薄互层预测中的应用.石油地球物理勘探,2015,50(3):516-522.
Yin Jiyao,Wu Baocheng,Wang Wei et al.Thin interbed thickness prediction using peak instantaneous frequency of time-frequency Teager-Kaiser energy.OGP,2015,50(3):516-522.
[6] 李庆忠.含油气砂岩的频率特征及振幅特征.石油地球物理勘探,1987,22(1):1-23.
Li Qingzhong.The frequency and amplitude of seismic waves sandstone.OGP,1987,22(1):1-23.
[7] 李国发,岳英,熊金良等.基于三维模型的薄互层振幅属性实验研究.石油地球物理勘探,2011,46(1):115-120.
Li Guofa,Yue Ying,Xiong Jinliang et al.Experimental study on seismic amplitude attribute of thin interbed based on 3D model.OGP,2011,46(1):115-120.
[8] 苏盛甫.薄储集层的反射特征和定量解释方法.石油地球物理勘探,1988,23(4):387-402.
Su Shengfu.Thin-reservoir reflection and the quantitative interpretation method.OGP,1988,23(4):387-402.
[9] 曲鑫,刘财,冯晅等.利用加权积分能谱方法和复数道分析技术对薄层的识别与分析.世界地质,2013,32(1):114-122.
Qu Xin,Liu Cai,Feng Xuan et al.Thin layer distinguishing and analysis by weighted integral spectrum method and complex trace analysis technique.Global Geology,2013,32(1):114-122.
[10] 黄文锋,姚逢昌,李宏兵.薄互层调谐规律研究与净厚度估算.石油地球物理探,2012,47(4):584-591.
Huang Wenfeng,Yao Fengchang,Li Hongbing.Regu-larities of tuning effects of thin interbedded layers and their net thickness determination.OGP,2012,47(4):584-591.
[11] 彭达,尹成,朱永才等.扇三角洲前缘薄互层叠置砂体的敏感属性分析.石油地球物理勘探,2015,50(4):714-722.
Peng Da,Yin Cheng,Zhu Yongcai et al.Sensitive seismic attribute analysis on thin interbed overlapped sandbodies in fan-delta front.OGP,2015,50(4):714-722.
[12] 张玉芬,熊维纲.石油地震勘探中薄互层的反射系数序列振幅谱特征分析.地球科学,1994,19(5):685-693.
Zhang Yufen,Xiong Weigang.Characteristic analysis of amplitude spectra of reflection coefficient of thin interbedding in oil prospecting.Earth Science,1994,19(5):685-693.
[13] 杨昊,郑晓东,李劲松等.基于匹配追踪的薄层自动解释方法.石油地球物理勘探,2013,48(3):429-435.
Yang Hao,Zheng Xiaodong,Li Jinsong et al.Thin-bed automatic interpretation based on matching pursuit.OGP, 2013,48(3):429-435.
[14] 北京诺克斯达石油科技有限公司.基于偶函数地震响应以估算薄层厚度的方法和装置.中国专利:201310528786.X,2016-08-03.
Beijing Rockstarstar Petroleum Technology Co Ltd.The Seismic Response to Even Function Estimation Method and Device Based on the Thickness of Thin Layer[P].Chinese patent:201310528786.X,2016-08-03.
[15] 陈学华,贺振华.改进的S变换及在地震信号处理中的应用.数据采集与处理,2005,20(4):449-453.
Chen Xuehua,He Zhenhua.Improved S-Transform and its application in seismic signal processing.Data Acquisition and Processing,2005,20(4):449-453.
[16] 张繁昌,李传辉,印兴耀.基于动态匹配子波库的地震数据快速匹配追踪.石油地球物理勘探,2010,45(5):667-673.
Zhang Fanchang,Li Chuanhui,Yin Xingyao.Seismic data fast matching pursuit based on dynamic matching wavelet library.OGP,2010,45(5):667-673.
[17] 董宁,杨立强.基于小波变换的吸收衰减技术在塔河油田储层预测中的应用研究.地球物理学进展,2008,23(2):533-538.
Dong Ning,Yang Liqiang.Application of absorption and attenuation based on wavelet transform for prediction of reservoir in Tahe oilfield.Progress in Geophysics,2008,23(2):533-538.
[18] 黄捍东,郭飞,汪佳蓓等.高精度地震时频谱分解方法及应用.石油地球物理勘探,2012,47(5):770-780.
Huang Handong,Guo Fei,Wang Jiabei et al.High precision seismic time-frequency spectrum decomposition method and its application.OGP,2012,47(5):773-780.
[19] 陈蓉,王峰.基于MATLAB的BP神经网络在储层物性预测中的应用.测井技术,2009,33(1):75-78.
Chen Rong,Wang Feng.Application of MATLAB-based of BP neural network in reservoir parameters prediction.Well Logging Technology,2009,33(1):75-78.
[20] 徐刚,张建宁,谭明友.BP人工神经网络在济阳拗陷圈闭地质评价中的应用.石油地球物理勘探,2004,39(5):565-569.
Xu Gang,Zhang Jianning,Tan Mingyou.Application of BP artificial neural network to geologic appreciation of traps in Jiyang depression.OGP,2004,39(5):565-569.
[21] 王桂英,白雪莲,李咏梅等.应用GeoEast系统预测煤层分布和厚度.石油地球物理勘探,2014,49(增刊1):184-191.
Wang Guiying,Bai Xuelian,Li Yongmei et al.Coal bed distribution and thickness prediction with GeoEast.OGP,2014,49(S1):184-191.
[22] 陈钢花,胡琮,曾亚丽等.基于BP神经网络的碳酸盐岩储层缝洞充填物测井识别方法.石油物探,2015,54(1):99-104.
Chen Ganghua,Hu Cong,Zeng Yali et al.Logging identification method of fillings in fractures and ca-verns in carbonate reservoir based on BP neural network.GPP,2015,54(1):99-104.
[23] 文晓涛,贺振华,黄德济.遗传算法与神经网络法在碳酸盐岩储集层评价中的应用.石油物探,2005,44(3):225-228.
Wen Xiaotao,He Zhenhua,Huang Deji.Using genetic algorithms and neural network to evaluate carbonate reservoir.GPP,2005,44(3):225-228.
[24] 刘志伟.遗传进化型神经网络体系结构研究[学位论文].安徽合肥:合肥工业大学,2007.
Liu Zhiwei.Research on Architecture of Genetic Evolutionary Neural Networks[D].Hefei University of Technology,Hefei,Anhui,2007.
[25] 王帅成,王多义,陈敏等.川西坳陷中段沙溪庙组天然气成藏条件分析.海洋石油,2010,30(3):42-46,96.
Wang Shuaicheng,Wang Duoyi,Chen Min et al.Natural gas reservoir-formation condition of Shaximiao Formation in mid-band of Western Sichuan Depression.Offshore Oil,2010,30(3):42-46,96.

基金

本项研究受中国石油天然气股份有限公司“地震沉积分析软件集成应用与区带、目标评价”课题(2016B-0305)资助。
PDF(1454 KB)

60

Accesses

0

Citation

Detail

段落导航
相关文章

/