可燃冰与油气双储层模型的海洋可控源电磁响应特征模拟分析

高妍, 马超, 张向宇

石油地球物理勘探 ›› 2022, Vol. 57 ›› Issue (4) : 950-962.

PDF(3096 KB)
PDF(3096 KB)
石油地球物理勘探 ›› 2022, Vol. 57 ›› Issue (4) : 950-962. DOI: 10.13810/j.cnki.issn.1000-7210.2022.04.021
非地震

可燃冰与油气双储层模型的海洋可控源电磁响应特征模拟分析

  • 高妍1,2, 马超1,2,3, 张向宇1
作者信息 +

Characteristics of simulated marine controlled-source electromagnetic responses of coupled gas hydrate and petroleum reservoir models

  • GAO Yan1,2, MA Chao1,2,3, ZHANG Xiangyu1
Author information +
文章历史 +

摘要

利用海洋可控源电磁(MCSEM)法可识别海底电阻率异常体,在海洋油气探测中得到了广泛的应用。基于复杂电性结构海底地层模型,提出一种基于预条件迭代求解的频率域矢量有限元电磁正演模拟方法,基于不完全LU分解的预条件方法,提高了迭代求解效率,层状模型模拟结果验证了方法的有效性。基于结构化任意六面体单元建立了真实的南海某海域地电模型,并针对不同构造矿藏储层特征,分别建立了深埋藏油气储层模型、可燃冰矿体模型及复杂基底地质模型,得到了不同激发、接收模式下的MCSEM响应特征:收发距较小时,地形影响较明显;对于埋藏较浅的可燃冰矿体,收发距较小时异常明显,而埋藏较深的油气储层则在收发距较大时异常明显。

Abstract

Marine controlled-source electromagnetic method (MCSEM) can be employed to identify resistivity anomalies on the seafloor and is thus widely used in offshore petroleum exploration. A simulation method of frequency-domain vector finite-element electromagnetic forward modeling based on preconditioned iterative solution is proposed on the basis of a complex seafloor strata model with a complex electrical structure. The preconditioning method based on incomplete lower-upper (ILU) decomposition improves the efficiency of iterative solution. The simulation results of the layered model verify the effectiveness of the method. A geoelectric model of a certain area of the South China Sea is built with arbitrary hexahedral structured elements. A deep-buried petroleum reservoir model,a gas hydrate deposit model,and a geological model with a complex basement are built,respectively,according to the reservoir characteristics of deposits with different structures. The characteristics of MCSEM response are analyzed under different excitation-receiving modes. Specifically,when the offset is small,the influence of topography is obvious. The influence is especially salient on shallow-buried gas hydrate deposits when the offset is small,while it is more distinct on deep-buried petroleum reservoirs when the offset is large.

关键词

海洋可控源电磁法 / 矢量有限元 / 预条件迭代 / 海底地形

Key words

marine controlled-source electromagnetic (MCSEM) method / vector finite-element / preconditioned iterative / seafloor topography

引用本文

导出引用
高妍, 马超, 张向宇. 可燃冰与油气双储层模型的海洋可控源电磁响应特征模拟分析[J]. 石油地球物理勘探, 2022, 57(4): 950-962 https://doi.org/10.13810/j.cnki.issn.1000-7210.2022.04.021
GAO Yan, MA Chao, ZHANG Xiangyu. Characteristics of simulated marine controlled-source electromagnetic responses of coupled gas hydrate and petroleum reservoir models[J]. Oil Geophysical Prospecting, 2022, 57(4): 950-962 https://doi.org/10.13810/j.cnki.issn.1000-7210.2022.04.021
中图分类号: P631   

参考文献

[1] 柳建新,郭天宇,王博琛,等. 油气勘探中海洋电磁技术的研究进展[J]. 石油物探,2021,60(4):527-538.
LIU Jianxin,GUO Tianyu,WANG Bochen,et al. Review of marine electromagnetic methods for hydrocarbon exploration[J]. Geophysical Prospecting for Petroleum,2021,60(4):527-538.
[2] 刘勇,李文彬,邓方顺,等. 海洋可控源电磁法深海油藏开采监测仿真[J]. 石油地球物理勘探,2022,57(1):237-244.
LIU Yong,LI Wenbin,DENG Fangshun,et al. Simulation of deep-sea reservoir development monitoring using marine controlled-source electromagnetic me-thod[J]. Oil Geophysical Prospecting,2022,57(1):237-244.
[3] ANDRÉIS D,MACGREGOR L. Controlled-source electromagnetic sounding in shallow water:principles and applications[J]. Geophysics,2008,73(1):F21-F32.
[4] CONSTABLE S,SRNKA L J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration[J]. Geophysics,2007,72(2):WA3-WA12.
[5] SRNKA L J,CARAZZONE J J,EPHRON M S,et al. Remote reservoir resistivity mapping[J]. The Leading Edge,2006,25(8):972-975.
[6] UM E S,HARRIS J M,ALUMBAUGH D L. An ite-rative finite element time-domain method for simulating three-dimensional electromagnetic diffusion in earth[J]. Geophysical Journal International,2012,190(2):871-886.
[7] ZHDANOV M S. Electromagnetic geophysics:notes from the past and the road ahead[J]. Geophysics,2010,75(5):75A49-75A66.
[8] 裴发根,方慧,裴亮,等. 天然气水合物电磁勘探研究进展[J]. 地球物理学进展,2020,35(2):775-785.
PEI Fagen,FANG Hui,PEI Liang,et al. Advances in electromagnetic exploration research of gas hydrate[J]. Progress in Geophysics,2020,35(2):775-785.
[9] 景建恩,伍忠良,邓明,等. 南海天然气水合物远景区海洋可控源电磁探测试验[J]. 地球物理学报,2016,59(7):2564-2572.
JING Jian’en,WU Zhongliang,DENG Ming,et al. Experiment of marine controlled-source electromagnetic detection in a gas hydrate prospective region of the South China Sea[J]. Chinese Journal of Geophy-sics,2016,59(7):2564-2572.
[10] DA SILVA N V,MORGAN J V,MACGREGOR L,et al. A finite element multifrontal method for 3D CSEM modeling in the frequency domain[J]. Geophysics,2012,77(2):E101-E115.
[11] 杨军,刘颖,吴小平. 海洋可控源电磁三维非结构矢量有限元数值模拟[J]. 地球物理学报,2015,58(8):2827-2838.
YANG Jun,LIU Ying,WU Xiaoping. 3D simulation of Marine CSEM using vector finite element method on unstructured grids[J]. Chinese Journal of Geophysics,2015,58(8):2827-2838.
[12] 殷长春,贲放,刘云鹤,等. 三维任意各向异性介质中海洋可控源电磁法正演研究[J]. 地球物理学报,2014,57(12):4110-4122.
YIN Changchun,BEN Fang,LIU Yunhe,et al. MCSEM 3D modeling for arbitrarily anisotropic media[J]. Chinese Journal of Geophysics,2014,57(12):4110-4122.
[13] 周峰,张志勇,陈煌,等. 基于非结构网格的三种CSEM有限元三维正演系统分析[J]. 石油地球物理勘探,2021,56(5):1190-1202.
ZHOU Feng,ZHANG Zhiyong,CHEN Huang,et al. Analysis of 3D finite-element forward modeling of CSEM data using three different formulas and unstructured grids[J]. Oil Geophysical Prospecting,2021,56(5):1190-1202.
[14] KOLDAN J,PUZYREV V,DE LA PUENTE J,et al. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics[J]. Geophysical Journal International,2014,197(3):1442-1458.
[15] LELIÈVRE P G,FARQUHARSON C G. Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes[J]. Geophysical Journal International,2013,195(1):330-341.
[16] MITSUHATA Y,UCHIDA T. 3D magnetotelluric modeling using the T-Ω finite element method[J]. Geophysics,2004,69(1):108-119.
[17] SCHWARZBACH C,BÖRNER R U,SPITZER K. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics:a marine CSEM example[J]. Geophysical Journal International,2011,187(1):63-74.
[18] SCHWARZBACH C,HABER E. Finite element based inversion for time-harmonic electromagnetic problems[J]. Geophysical Journal International,2013,193(2):615-634.
[19] NAM M J,KIM H J,SONG Y,et al. Three-dimensional topographic and bathymetric effects on magnetotelluric responses in Jeju Island,Korea[J]. Geophysical Journal International,2009,176(2):457-466.
[20] CAI H Z,XIONG B,HAN M R,et al. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method[J]. Computers & Geosciences,2014,73:164-176.
[21] BADEA E A,EVERETT M E,NEWMAN G A,et al. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials[J]. Geophysics,2001,66(3):786-799.
[22] KEY K,WEISS C. Adaptive finite-element modeling using unstructured grids:the 2D magnetotelluric example[J]. Geophysics,2006,71(6):G291-G299.
[23] LI Y G,KEY K. 2D marine controlled-source electromagnetic modeling:part 1-an adaptive finite-element algorithm[J]. Geophysics,2007,72(2):WA51-WA62.
[24] MUKHERJEE S,EVERETT M E. 3D controlled-source electromagnetic edge-based finite element mo-deling of conductive and permeable heterogeneities[J]. Geophysics,2011,76(4):F215-F226.
[25] NAM M J,KIM H J,SONG Y,et al. 3D magnetotelluric modelling including surface topography[J]. Geo-physical Prospecting,2007,55(2):277-287.
[26] KORDY M,WANNAMAKER P,MARIS V,et al. 3D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers-part Ⅰ:forward problem and parameter Jacobians[J]. Geophysical Journal International,2015,204(1):74-93.
[27] GU X M,HUANG T Z,LI L,et al. Quasi-minimal residual variants of the COCG and COCR methods for complex symmetric linear systems in electromagnetic simulations[J]. IEEE Transactions on Microwave Theory and Techniques,2014,62(12):2859-2867.
[28] LI L,HUANG T Z,JING Y F,et al. Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems[J]. Computer Physics Communications,2010,181(2):271-276.
[29] UM E S,COMMER M,NEWMAN G A. Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the Earth:finite-element frequency-domain approach[J]. Geophysical Journal International,2013,193(3):1460-1473.
[30] BÖRNER R U. Numerical modelling in geo-electromagnetics:advances and challenges[J]. Surveys in Geophysics,2010,31(2):225-245.
[31] 尚晓荣,岳明鑫,杨晓冬,等. 起伏地形对三维可控源电磁响应的影响研究[J]. 石油地球物理勘探,2022,57(1):222-236.
SHANG Xiaorong,YUE Mingxin,YANG Xiaodong,et al. Influence of undulating terrain on three-dimensional controlled-source electromagnetic response[J]. Oil Geophysical Prospecting,2022,57(1):222-236.
[32] 沈金松,陈小宏. 海洋油气勘探中可控源电磁探测法(CSEM)的发展与启示[J]. 石油地球物理勘探,2009,44(1):119-127.
SHEN Jinsong,CHEN Xiaohong. Development and enlightenment of controlled-source electromagnetic (CSEM) surveying method in marine oil/gas exploration[J]. Oil Geophysical Prospecting,2009,44(1):119-127.
[33] 任文静,何展翔,孙卫斌,等. 海底节点式时频双域电磁采集系统及试验[J]. 石油地球物理勘探,2021,56(2):398-406.
REN Wenjing,HE Zhanxiang,SUN Weibin,et al. Benthic nodal time-frequency dual-domain electromagnetic acquisition system and test[J]. Oil Geophysical Prospecting,2021,56(2):398-406.

基金

本项研究受南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项“南海深海盆区莫霍面地震反射空间分布研究”(GML2019ZD0208)、中国地质调查局地质调查项目(DD20221912)和国家重点研发计划项目“冷泉系统地球物理定量表征”(2018YFC0310002)联合资助。
PDF(3096 KB)

39

Accesses

0

Citation

Detail

段落导航
相关文章

/