本文提出了-种基于经验模态分解的属性优化新方法,其具体步骤为:首先对某-种地震属性的各个列向量分别进行经验模态分解,得到各个列向量的固有模态分量组;其次分别对每-组固有模态分量的各个分量的权重进行归-化,并将前若干分量分别乘以相应的归-化权重系数后再线性相加得到新的列向量,进而构成优化后的属性矩阵;然后对其他几种参与优化的属性也实行前面两个步骤,分别得到相应的新的地震属性矩阵;最后将得到的新地震属性矩阵进行线性叠加,得到优化后的地震属性矩阵。将经验模态分解方法和主成分分析方法分别应用于相同的实际资料,试验证明前者在保证运行效率的情况下能用更少的主成分(固有模态分量)刻画出更多的原始属性信息,并且提高了原始属性剖面的分辨率。
Abstract
This paper proposes a new attribute optimiza-tion method based on empirical mode decomposi-tion. Firstly we decompose every kind of seismicattributes by the empirical mode decomposition andobtain some intrinsic mode functions.Then wenormalize the weight coefficients of the top threecomponents and multiply the three attribute valueby the normalized weight coefficient and get the at-tribute components.Finally,we add the attributecomponents together.The empirical mode decom-position method and the principal component anal-ysis method are applied in the same actual data.The result shows that the empirical mode decom-position method can obtain more information of theoriginal attributes with less principal components(intrinsic mode functions),and improve the reso-lution of the original attribute section. This couldbe very helpful for fluid identification when attrib-ute values change dramatically.
关键词
经验模态分解(EMD) /
属性优化 /
固有模态分量(IMF) /
主成分分析(PCA)
{{custom_keyword}} /
Key words
intrinsic mode function(IMF) /
principal component analysis(PCA) /
empirical mode decomposition(EMD) /
attributeoptimization
{{custom_keyword}} /
中图分类号:
P631
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Barnes A E. Weighted average seismic attributes.CUeophysics,2000,65(1):275-285
[2] 印兴耀,周静毅.地震属性优化方法综述.石油地球物理勘探,2005, 40(4): 482-489Yin Xingyao, Ghou Jingyi. Summary of optimummethods of seismic attributes.OGP,2005,40(4):482-489
[3] 印兴耀,孔国英,张广智.基于核主成分分析的地震属性优化方法及应用.石油地球物理勘探,2008,43(2):179-183Yin Xingyao,Kong Guoying, Zhang Guangzhi. Scis-mic attributes optimization based on kernel principalcomponent analysis(KPCA) and application. OGP,2008,43(2):179-183
[4] 赵加凡,陈小宏.基于灰关联分析与K-I.变换的双重属性优化方法.石油地球物理勘探,2004,39(6):661-665Zhao Jiafan, Chcn Xiaohong. Dual optimization ofseismic attributes based on grey association analysisand K-L transform. OUP,2004,39(6):661-665
[5] 王永刚,刘伟,黄国平.地震属性的C4.A-BP优化方法.石油地球物理勘探,2002,37(6):60 6-611Wang Yonggang,Liu Wci,Huang Uuoping. UA-BPoptimization of seismic attribution. OUP,2002,37(6):606-611
[6] 殷文,印兴耀,张繁昌.基于并行遗传算法的地震属性优化研究.吉林大学学报(自然科学版),2005,35(5):672-676Yin Wcn, Yin Xingyao,Ghang Fanchang.A Studyon seismic attribute optimization based on parallel ge-nctic algorithm. Journal of Jilin Unverszty(Natu-ral Scicncc Edition), 2005,35(5):672-676
[7] Huang N E,Long S R,Shen Z. The mechanism forfrequency downshift in nonlinear wave evolution.AdvApl Mech,1996,32:59-111
[8] Huang N E, Shen Z. The empirical mode decomposi-tion and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc LondonA,1998,454:903-995
[9] Huang N E, Shen Z, Long S R. A new view of non-linear water waves; the Hilbert spectrum. Annu RevFluid Mech,1999,31:417-457
[10] Wu G,Huang N E. A study of the characteristics of white noise using the empirical mode decompositionmethod. Proc Roy Soc London,2004,460A:1597-1611
[11] 陈林,宋海斌.基于经验模态分解的地震瞬时属性提取.地球物理学进展,2008,23(4) ; 1179-1185Chen Lin, Song Haibin. Seismic instantaneous attrib-ute extraction based on empirical mode decomposi-tion. Progress in CUeophysics,2008,23(4):1179-1185
[12] 龚志强,邹明玮,高新全等.基于非线性时间序列分析经验模态分解和小波分解异同性的研究.物理学报,2005,54 (8):3947-3957Gong Ghiqiang, Gou Mingwci,Uao Xinquan ct al. Onthe difference between empirical mode decompositionand wavclet decompositon in the nonlinear time se-rics. Acta Physica Sinica,2005,54 (8):3947-3957
[13] Hotclling H. Analysis of a complex of statistical vari-abler into principal components. Education Psychol-okey,1933,24(3):417-444
[14] Carrcira-Pcrpian M A. A revierx of Dimension Re-duction Techniques.Technical Report CS-96-09,1997:5-20,Department of Computer Scicncc,Uni-versity of Sheffield
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点基础研究发展规划项目“非均质油气藏地球物理探测的基础研究”(2007CB209600)资助
{{custom_fund}}